Breakwaters	and	closure	dams

On the cover picture: Ship approaching a harbour, Willem Gruijter jr, (1817-1880) Oil on Panel, 23 × 34 cm, Belasting- en Douanemuseum, Rotterdam A ship is approaching a harbour, protected by a breakwater made from woodwork
(palisade). Harbour approach indicated by a lighthouse, with an oil lamp. On the breakwater is fire basket as leading light. A wooden buoy is floating in front.

Breakwaters and closure dams

Henk Jan Verhagen Kees d'Angremond Ferd van Roode

Related textbooks published by VSSD:

Introduction to bed, bank and shore protection, Engineering the interface of soil and water

Gerrit J. Schiereck

2004 / xii+ 400 p. / ISBN 978-90-407-1683-6 / hardback

http://www.vssd.nl/hlf/f007.htm

Ebb and Flood Channel Systems in the Netherlands Tidal Waters Johan van Veen 2002 / 32 p. / ISBN 978-90-407-2338-4 http://www.vssd.nl/hlf/f015.htm

Coastal Dynamics 1, Lecture notes - version 0.3 2012

Judith Bosboom and Marcel J.F. Stive

2012 / xii + 573 pp. / ISBN 978-90-6562-286-0 / paperback

http://www.vssd.nl/hlf/f019.htm

© VSSD

First edition 2001 Second edition 2009-2012

Published by VSSD

Leeghwaterstraat 42, 2628 CA Delft, The Netherlands

tel. +31 15 27 82124, telefax +31 15 27 87585, e-mail: hlf@vssd.nl

internet: http://www.vssd.nl/hlf

URL about this book: http://www.vssd.nl/hlf/f011.htm

A collection of digital pictures and/or an electronic version can be made available for lecturers who adopt this book. Please send a request by e-mail to hlf@vssd.nl

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photo-copying, recording, or otherwise, without the prior written permission of the publisher.

Hardback ISBN 978-90-6562-173-3 Paperback ISBN 978-90-6562-197-9 NUR 956

Keywords: coastal engineering, breakwaters, closure dams

Preface

This book is primarily a study book for graduate students. It has been prepared for students in Coastal Engineering at the Delft University of Technology. The consequence is that, in addition to treating the latest insights into the subject matter, it places the developments in their historic perspective, at least when this contributes to better understanding. It also means that this book cannot replace comprehensive textbooks or original scientific publications. The book focuses on understanding of the design process, but is certainly not a design manual. The reader is strongly advised to consult the original references rather than blindly following this textbook. In the curriculum of Delft University, the course on breakwaters and closure dams is preceded by a variety of courses on subjects such as fluid mechanics, hydraulic engineering, coastal engineering and bed, bank and shore protection, design process, and probabilistic design. Therefore it is assumed that the reader is familiar with this knowledge and it will not be discussed in detail in this book.

At first sight it seems strange to combine in one book the design of two rather dedicated types of structures with distinctly different purposes, however from an educational point of view this is not so.

In both cases the design process requires that due attention should be paid to:

- the functional requirements
- the various limit states to which a structure will be exposed in relation to the requirements
- the various limit states that occur during construction phases
- the relation between these limit states and the occurrence of certain natural conditions

The differences between closure dams and breakwaters will enable us to focus attention on the above mentioned considerations.

In addition to this, there are also quite a number of similarities. In this respect, we refer to the construction materials, such as quarry stone, concrete blocks and caissons, which are widely used in both types of structures. The same applies to a wide range of construction equipment, both floating and rolling, and, last but not least, the interdependence between design and construction.

It is good to mention here that the design of closure dams, and more specifically closure dams in estuaries, has undergone a major development in the period between 1960 and 1985, when the Delta Project in the Netherlands was being executed. Only recently in Korea similar closures works have been executed. Also some experiences from these works are included in this book. In the view of the accelerated sea level rise it is anticipated that more works of this kind will be needed in future.

Breakwaters, and specifically various kinds of rubble mound breakwaters, underwent a tremendous development in the period 1985-1995. After that, the pace of innovation seemed to slowing down, although monolithic breakwaters were gaining attention in the following decade. In the most recent years focus of research was on the effect of shallow water conditions, optimising the use of the quarries (the Icelandic breakwaters) as well as research on variations on the rubble mound breakwater, like the (semi-)submerged structures, breakwaters with a longer berm and new concrete elements. Therefore, the present study book does not represent a static subject. This necessitates that both the teacher and the student should continuously observe the latest developments.

The first edition of this book (2001) was written by Kees d'Angremond and Ferd van Rooden. This second edition has been updated by Henk Jan Verhagen. New additions to the book to be mentioned are the treatment of wave statistics, the spectral approach in the stability formula, the shallow water conditions and the Icelandic breakwaters. The book has been brought in line with the Rock Manual (2007) and with the European Standard on Armour Stone (EN 13383).

Valuable contributions in the form of comments and/or text were received from: Marcel van Gent (Deltares), Jentsje van der Meer (independent consultant), Jelle Olthof (Delft University of Technology and Royal Boskalis Westminster), Gerrit Jan Schiereck, (Delft University of Technology), Sigurður Sigurðarson (Icelandic Maritime Administration) and Shigeo Takahashi (Japanese Port and Airport Research Institute). Many others contributed in a variety of ways, including correcting text and preparing figures. We are especially grateful to Margaret Boshek, who checked both the English spelling as well as the readability of the book.

Henk Jan Verhagen, Kees d'Angremond Delft, January 2009

Contents

Pre	etace		V
1	INT	RODUCTION	1
	1.1	Scope	1
	1.2	References	1
	1.3	Miscellaneous	2
2	POS	SITIONING THE SUBJECT	3
	2.1	General	3
	2.2	Types of breakwaters	5
	2.3	Types of closure dams	8
	2.4	Historical breakwaters	11
	2.5	Historical closures	14
3	THE	E DESIGN PROCESS	23
	3.1	General	23
	3.2	Abstraction level	24
	3.3	Phases	25
	3.4	Cyclic design	25
	3.5	Consequences of systematic design	26
	3.6	Probabilities	27
4	CON	NSIDERATIONS AT SYSTEM LEVEL	32
	4.1	General	32
	4.2	Functions of breakwaters and examples	32
	4.3	Side effects of breakwaters	41
	4.4	Functions of closure dams and side effects	43
	45	Various dams and a few details	47

5	USE	OF THEORY	50
	5.1	General	50
	5.2	Flow and hydrostatic stability	52
	5.3	Waves	61
	5.4	Geotechnics	72
6	DAT	'A COLLECTION	80
	6.1	General	80
	6.2	Meteorological data	81
	6.3	Hydrographic data	81
	6.4	Geotechnical data	84
	6.5	Construction materials, equipment, labour	86
7	STA	BILITY OF RANDOMLY PLACED ROCK MOUNDS	91
	7.1	Stability formula for rock	91
	7.2	Concrete armour units	104
	7.3	Stability calculation	109
	7.4	Special subjects	110
	7.5	Near bed structures	116
8	BRE	AKWATERS WITH A BERM AND BERM BREAKWATERS	118
	8.1	Introduction	118
	8.2	Seaward profiles of dynamically stable bunds	121
	8.3	Longshore transport of stone	123
	8.4	Crest, rear slope and head	124
	8.5	The Icelandic breakwater	125
9	STA	BILITY OF MONOLITHIC BREAKWATERS	128
	9.1	Introduction	128
	9.2	Wave forces and their effects	129
	9.3	Influencing the forces	134
	9.4	Caissons with a berm (composite breakwaters)	136
	9.5	Failure mechanisms	138
	9.6	Scour	138
	9.7	Foundation	140
10	WAY	VE-STRUCTURE INTERACTION	142
	10.1	Introduction	142
	10.2	Reflection	143
	10.3	Run-up	144
	10.4	Overtopping for rubble mounds	149
	10.5	Overtopping for vertical walls	151

Contents	

	10.6 Transmission by rubble mounds	152
	10.7 Neural networks	156
11	DEGICN DD A CTICE OF DDE A VWA TED CDOCC CECTIONS	150
11	DESIGN PRACTICE OF BREAKWATER CROSS-SECTIONS 11.1 Introduction	158 158
		159
	11.2 Permeability/porosity and layer thickness11.3 Berm breakwater	162
	11.4 Traditional multi-layered breakwater	163
	11.5 Monolithic breakwaters	171
	11.5 Wionontine dreakwaters	1/1
12	DESIGN PRACTICE FOR CLOSURE DAMS	173
	12.1 Basics of the storage area approach	173
	12.2 The design methodology for closures	178
	12.3 Stone closures	179
	12.4 Caisson closures	182
	12.5 Sand closure	186
	12.6 Cross-section of closure dams	192
	12.7 Final remarks	194
13	CONSTRUCTION METHODS FOR GRANULAR MATERIAL	196
	13.1 Introduction	196
	13.2 Scour prevention by mattresses	198
	13.3 Construction and use of mattresses	200
	13.4 Construction of granular filters	201
	13.5 Providing and handling of quarry stone	202
	13.6 Use of rolling and floating equipment	204
	13.7 Very specific techniques and ancillary equipment	213
	13.8 Minimizing risks during construction	218
	13.9 Survey	220
14	CONSTRUCTION METHODS FOR MONOLITHIC STRUCTURES	225
17	14.1 Introduction	225
	14.2 Monolithic breakwaters	227
	14.3 Caissons	229
	17.5 (41550115	22)
15	FAILURE MODES AND OPTIMIZATION	238
	15.1 Introduction	238
	15.2 Failure mechanisms	239
	15.3 Fault trees	242
	15.4 Optimization	246
16	FLOW DEVELOPMENT IN CLOSURE GAPS	249
•	16.1. Calculation of flow in a river channel	249

10	6.2 Calculation of flow in the entrance of a tidal basin	251
17 R	EVIEW	257
1′	7.1 Breakwaters	257
1'	7.2 Closure dams	259
APPEN	IDICES	267
APPEN	DIX 1 Example of the determination of a design storm	269
A	1.1 Statistics of individual observations	269
A	1.2 The Peak over Threshold method (PoT-analysis)	272
A	1.3 What to do if only random data are available?	281
A	1.4 Computation of the armour units	286
APPEN	DIX 2 Quarry operations	298
A	2.1 Reconnaissance	298
A	2.2 Blasting	303
A	2.3 Operation of the quarry	307
APPEN	DIX 3 Concrete armour units	308
A	3.1 Shape	308
A	3.2 Size	311
A	3.3 Density	311
A	3-4 Fabrication	312
A	3.5 Placement	314
APPEN	DIX 4 Goda's principles for breakwater design	316
1	Introduction	317
2	Historical development of upright breakwaters in Japan	317
3	Review of wave pressure formulae for vertical wall	322
4	Design formulae of wave pressures for upright breakwaters	325
5	Discussion of several design factors	333
6	Concluding remarks	334
R	eferences	335
APPEN	IDIX 5 Optimum breakwater design	337
APPEN	DIX 6 Closing sequence in case of multiple channels	340
A	6.1 Introduction	340
A	6.2 Blocking the shallows first	341
A	6.3 Blocking the main channel first	345
A	6.4 Closure over the full dam length	351
APPEN	IDIX 7 Construction equipment	355

Contents xi

A7.1 General	355
A7.2 Land-based equipment – dumping of material	356
A7.3 Land-based equipment – controlled placement	360
A7.4 Waterborne equipment – dumping of bulk material	363
A7.5 Waterborne equipment – controlled placement	365
A7.6 Moving on impassable sites	369
APPENDIX 8 Breakwater examples	374
APPENDIX 9 Glossary	388
References	393
Ph.D. and M.Sc. theses from Delft University of Technology	393
Other references	394
List of symbols	397
Index	401

Trademarks:

The use of trademarks in this publication does not imply any endorsement or disapproval of this product by the authors or their employers.

The following trademarks used in this book are acknowledged:

The following trademarks used in this book are deknowledged.		
Accropode	Sograh Consultants, France	
Armorflex	Armourtec, USA	
Basalton	Holcim betonprodukten bv, Aalst, Netherlands	
Core-Loc	US Army Corps of Engineers, USA	
Elastocoast	Elastogran GmbH, Lemförde, Germany (subsidiary of BASF)	
EsproTex	Greenbanks erosion control, Appeltern, Netherlands	
Geocontainer	Ten Cate Nicolon, Netherlands	
Gobimat, Gobiblok	Greenbanks erosion control, Appeltern, Netherlands	
GreenFlex betonblokkenmatten	Greenbanks erosion control, Appeltern, Netherlands	
HydroBlock betonzuilen	Greenbanks erosion control, Appeltern, Netherlands	
Magnadense	Minelco AB Sweden	
SmartSoils	Deltares, Netherlands	
Soft Rock	Naue Fahsertechnik, Germany	
Waverider	Datawell, Haarlem, Netherlands	
Xbloc	Delta Marine Consultants, Netherlands	
	Accropode Armorflex Basalton Core-Loc Elastocoast EsproTex Geocontainer Gobimat, Gobiblok GreenFlex betonblokkenmatten HydroBlock betonzuilen Magnadense SmartSoils Soft Rock Waverider	

1 INTRODUCTION

1.1 Scope

For this book we have deliberately chosen that the text should follow a more or less logical design procedure for both breakwaters as well as closure dams. This means that in each step of the procedure attention is paid to both breakwaters and closure dams and that every time the two types of structures are compared the similarities and differences are emphasized.

With respect to breakwaters, all existing types are discussed briefly but only the types that are frequently used all over the world (i.e. rubble mound breakwaters, berm breakwaters and monolithic breakwaters) are treated in detail.

With regard to closure dams, it is emphasized that only the constructural aspect of stopping the water movement is considered in this book. This means that only the closing operation itself is treated; the transformation of the closing dam into a permanent structure like an embankment is beyond the scope of this book.

It is expected that the reader possesses basic knowledge of hydraulic engineering. Only in some cases, where they are deemed useful for a proper understanding of the actual design process, are aspects of basic hydraulic engineering presented.

1.2 References

This book is an educational textbook, not a design manual or a reference book. The focus of this book is the understanding of the basic principles. It is not an overview of all existing formulas pertaining to breakwater or closure dam design. Also, because the results of new research will modify existing formulas, it is not useful to focus on the minute details of such formulas, but more on the physical concepts behind the formulas. Although a study book has its purpose, there are some outstanding reference books in the field cited by this textbook and these are often far more comprehensive than any study book. Therefore a number of books and

periodicals that are available to any engineer in charge of the design or construction of breakwaters or closure dams are mentioned here.

For *breakwaters* such books include: Coastal Engineering Manual [US ARMY CORPS OF ENGINEERS, 2002]), The Rock Manual (CIRIA/CUR/CETMEF [2007]) and various PIANC/MarCom Working Group reports. For *closure dams* reference may be made to: The Closure of Tidal Basins (HUIS IN 'T VELD, STUIP, WALTHER, VAN WESTEN [1984]) and the Manuals of the Expertise Network Water defences (ENW, formerly TAW, in Dutch). For wave-structure interaction, refer to the European Overtopping Manual (PULLEN *ET.AL* [2007]). Useful periodicals include the journals of the ASCE, the journal "Coastal Engineering" (from Elsevier) as well as the "Coastal Engineering Journal" (from World Scientific) and the yearly proceedings of the international conferences on Coastal Engineering and on Coastal Structures.

Additional educational material (PowerPoint presentations, videos) is on-line available via the educational platform of TU Delft (http://blackboard.tudelft.nl). To have guest access to this website, one should not log-in, but click on "courses" and search for "ct5308".

1.3 Miscellaneous

To avoid misunderstandings, a glossary of the terms used in this book is added as Appendix 9. For Dutch students an English-Dutch glossary is available on the above mentioned "blackboard" site. The reader is also referred to a more general vocabulary on hydraulic engineering (http://www.waterdictionary.info).

In this book, the metric (mks) system (based on the definition of mass [kg], length [m], and time [s] has been used, except for some widely accepted nautical and hydrographic terms such as knots, fathoms and miles.

2 POSITIONING THE SUBJECT

2.1 General

Breakwaters are widely used throughout the world. This type of structure is primarily designed for the protection of vessels harboured within ports and for port facilities from wave action, but sometimes breakwaters are also used to protect beaches from erosion or to protect valuable habitats that are threatened by the destructive forces of the sea. Although the threat is usually a product of wave action, protection against currents is also important. Additionally, breakwaters can prevent or reduce the siltation of navigation channels. In some cases, breakwaters also accommodate loading facilities for cargo or passengers.

Closure dams are constructed for a variety of very different purposes; such as the creation of a separate tidal basin for power generation or as sea defence structures to increase safety. Compared to closure works, few other engineering works have such an extensive impact on the environment in all aspects. For instance, the main purpose of the construction of the Afsluitdijk closure dam in the Netherlands was to provide protection against high storm surge levels and to facilitate land reclamation. Additional advantages were fresh water conservation and a road connection between the provinces of Holland and Friesland. The purpose of a closure dam may be one or more of such objectives, but these are automatically accompanied by other side effects, some of which may be negative. A thorough study of these impacts is part of the design process. A feasibility study that does not detail and forecast the negative aspects of the closure works is incomplete and valueless. These unforeseen negative effects for the Afsluitdijk include: the drastic change in tidal amplitude in the Waddenzee, consequential impact on the morphological equilibrium of the tidal flats and channel system, the social impact on life and employment in the bordering cities, the influence on drainage and the ground water table in the surrounding land areas, the changes to the fisheries industry, and effects on flora and fauna.

after which, for future safety, the desired definite dam profile can be made. This structure is based on construction in no-flow conditions.

2.2 Types of breakwaters

There are many different types of breakwaters that can be divided into categories according to their *structural features*:

Mound types

Mound types of breakwaters are simply large heaps of loose elements, such as gravel and quarry stone or concrete blocks. The stability of the exposed slope of the mound depends on the ratio between load and strength i.e. wave height (H) versus size and the relative density of the elements (Δd). On one extreme, for example, is a gravel beach that is subject to continuous changes in the equilibrium profile as the wave characteristics change and also due to longshore transport. On the other extreme, for example, is the 'statically stable breakwater', where the weight of the elements in the outer armour layer is sufficient to withstand the wave forces. Between these two extremes is the 'berm breakwater', where the size of the armour is not sufficient to guarantee stability under all conditions, but where some extra quantity of material is provided so that the slope of the structure can reshape between given limits. Typical values of $H/\Delta d$ for the three types of structures are given in Table 2-1.

Type of structure	$H/(\Delta d)$
Sandy Beach	> 500
Gravel Beach	20 - 500
Rock slope	6 - 20
Berm Breakwater	3 - 6
(Stable) Rubble Mound Breakwater	1 - 4
Caisson	< 1

Table 2-1 Characteristic values of $H/(\Delta d)$

Monolithic types

Monolithic breakwaters have a cross-section which acts as one solid block. Types of monolithic structures include caissons, a block wall, or a masonry structure. This type of structure can be categorized by a typical value of $H/\Delta d$ that is given (as caisson) in Table 2-1. The main differences between the mound and the monolithic types of breakwaters are caused by the interaction between the structure and the subsoil and also by the behaviour at failure. The mound-type structures can be considered flexible (i.e. they can follow uneven settlement of the foundation layers), whereas monolithic structures require a solid foundation that can cope with high and often dynamic loads. The behaviour of the structures when close to failure is also quite different. When a critical load value is exceeded, a monolithic structure will